	egents Chemistry ame:	7.		4				ate:	
Sh of	ow all work for t significant figure	he foliowi s.	ng problei	ms and rep	oort ansv	vers to th	ie approp	riate nu	mbe
1.	18.0 mLs of 1. NaOH solution		eutralizes	54.0 mLs	of NaOH.	. What is	the mola	arity of t	the
	n 200			·.		- 0	'e '' '' '' '' '' '' '' '' '' '' '' '' '	·	
		ā .				20			
2	a	5 · 2		(a) (b)			= 5 '4	TV .	l ·
2.	45 mLs of 0.30 of the HNO ₃ ?	M NaOH	is needed	to titrate!	54 mLs o	f HNO ₃ .	What is t	the mola	arity
	R G			e "		,		= 9	
ě			13				-		
	3 S					₽;			063
3.	How many mLs	of 0.20 N	4 KOH are	needed to	titrate 4	10 mLs o	F 0.10 M I	HNO₃?	
						24			
. -	= = = 1	·	· •						•
4.	How many milli	liters of 0	.050 M HC	l are need	ed to ex	actly neu	tralize 30	mLs of	0.10
81	M Ba(OH)₂?								
a a				* *		91		H 55	**
	-		8						
5.	How many mLs	of 0.40 M	1 Ba(OH)₂	are neede	d to titra	te 25 mL	s of 0.50	M H₂SC)4?

1. A student recorded the following buret readings during a titration of a base with an acid:

	Standard 0.100 M HCl	Unknown KOH
Initial reading	9.08 mL	0.55 mL
Final reading	19.09 mL	5.56 mL

a Calculate the molarity of the KOH. Show all work.

b Record your answer to the correct number of significant figures.

Base your answers to questions 2 through 5 on the information and data table below.

A titration setup was used to determine the unknown molar concentration of a solution of NaOH. A 1.2 M HCl solution was used as the titration standard. The following data were collected.

	Trial 1	Trial 2	Trial 3	Trial 4
Amount of HCI Standard Used	10.0 mL	10.0 mL	10.0 mL	10.0 mL
Initial NaOH Buret Reading	0.0 mL	12.2 mL	23.2 mL	35.2 mL
Final NaOH Buret Reading	12.2 mL	23.2 mL	35.2 mL	47.7 mL

- 2. Calculate the volume of NaOH solution used to neutralize 10.0 mL of the standard HCl solution in trial 3. Show your work.
- 3. According to Reference Table M, what indicator would be most appropriate in determining the end point of this titration? Give one reason for choosing this indicator.
- 4. Calculate the average molarity of the unknown NaOH solution for all four trials. Your answer must include the correct number of significant figures and correct units.
- 5. Explain why it is better to use the average data from multiple trials rather than the data from a single trial to calculate the results of the titration.